

CARINGBAH HIGH SCHOOL

Name:

Mathematics Extension 1

		Attempt Qu	estions 11-	-14	e		
		Section II –	60 marks (pages 6–11)		
		 Allow abou 	t 15 minute	s for this se	ction		
70		Attempt Questions 1–10					
Total n	narks:	Section I – 1	1 0 marks (p	ages 2–5)			
		 In Question and/or calc 	ns 11–14, sł ulations	how relevan	t mathemat	tical reasor	ning
		 A reference sheet is provided. 					
		NESA appr	oved calcul	lators may b	e used		
		 Write using 	l black pen				
Instruc	ctions	 Working tin 	ne – 2 hours	s			

This paper must not be removed from the examination room

/15

/15

/70

%

/15

/15

/10

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Which expression is equal to $\sin x + \cos x$?

(A) $\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$

(B) $\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)$

- (C) $2\sin\left(x+\frac{\pi}{4}\right)$
- (D) $2\sin\left(x-\frac{\pi}{4}\right)$

2 What is the acute angle between the lines 3x + y = 4 and x - 2y = 5?

- (A) $\tan^{-1} 0.5$
- (B) $\tan^{-1} 1$
- (C) $\tan^{-1} 2$
- (D) tan⁻¹ 7

3 Which of the polynomials are divisible by x + 1?

 (I)
 $x^{2018} - 1$ (II)
 $x^{2017} - 1$ (III)
 $x^{2018} + 1$ (IV)
 $x^{2017} + 1$

 (A)
 (I) and (III) only
 (II) and (III) only
 $x^{2017} + 1$ (IV)
 $x^{2017} + 1$

 (B)
 (II) and (III) only
 (II) and (III) only
 $x^{2017} + 1$ (IV)
 $x^{2017} + 1$

 (B)
 (II) and (III) only
 (II)
 $x^{2017} + 1$ (IV)
 $x^{2017} + 1$

 (D)
 (I) and (IV) only
 (II)
 $x^{2017} + 1$ (III)
 $x^{2017} + 1$

4 In the diagram below, if *BC* and *DC* are tangents then:

- (A) $\alpha + \beta = 180^{\circ}$
- (B) $2\alpha + \beta = 180^{\circ}$
- (C) $\alpha + 2\beta = 180^{\circ}$
- (D) $2\alpha + 2\beta = 180^{\circ}$
- 5 A particle is moving in simple harmonic motion which satisfies $\ddot{x} = -4x$. The particle starts from x = 0 with initial velocity 4 m/s.

Which is a possible expression for the displacement, x, of the particle?

- (A) $x = 2 \sin 2t$
- (B) $x = 2 \sin 4t$
- (C) $x = 4 \sin 2t$
- (D) $x = 4 \sin 4t$

6 What is the derivative of $6\sin^{-1}\frac{x}{3}$?

(A)
$$\frac{1}{\sqrt{9-x^2}}$$
 (B) $\frac{2}{\sqrt{9-x^2}}$

(C)
$$\frac{6}{\sqrt{9-x^2}}$$
 (D) $\frac{18}{\sqrt{9-x^2}}$

7 The diagram shows the graph of y = f(x).

Which diagram shows the graph of $y = f^{-1}(x)$?

- 8 What are the asymptotes of $y = \frac{x+3}{(x-2)(x+1)}$?
 - (A) y = 0, x = 2, x = -1
 - (B) y = 0, x = -2, x = 1
 - (C) y = 3, x = 2, x = -1
 - (D) y = 3, x = -2, x = 1
- 9 Which of the following are the coordinates of the point of intersection of the normal $x + 2py = 8ap^3 + 4ap$ and the parabola $x^2 = 4ay$?
 - (A) $(2ap, ap^2)$
 - (B) $(4ap, 4ap^2)$
 - (C) $(-2ap, ap^2)$
 - (D) $(-4ap, 4ap^2)$
- 10 A particle moves in a straight line. Its position at any time *t* is given by

$$x = 3\cos 2t + 4\sin 2t.$$

The acceleration in terms of x is:

- (A) $\ddot{x} = -2x$
- (B) $\ddot{x} = -3x$
- (C) $\ddot{x} = -4x$
- (D) $\ddot{x} = -5x$

Marks

Section II

(e)

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question on SEPARATE writing paper. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use SEPARATE writing paper.

(a) A and B are the points (1, 4) and (5, 2) respectively. Find the coordinates of the point M 2 which divides the interval AB externally in the ratio 2:3.

(b) Solve
$$\frac{2}{x} \le \frac{x}{2}$$
. **3**

(c) Evaluate
$$\lim_{x\to 0} \frac{\sin\left(\frac{x}{3}\right)}{4x}$$
.

(d) Water at a temperature of 24°C is placed in a freezer that maintains a constant temperature at -12° C. After time *t* minutes the rate of change of temperature *T* of the water is given by the formula:

$$\frac{dT}{dt} = -k(T+12)$$

where t is the time in minutes and k is a positive constant.

(i)	Show that $T = Ae^{-kt} - 12$ is a solution of this equation, where A is a constant.	I
(ii)	Show that the value of A is 36.	1
(iii)	After 15 minutes the temperature of the water falls to 9°C. Show that the value of k is 0.0359 correct to 3 significant figures.	1
(iv)	Find to the nearest minute the time taken for the water to start freezing. (Freezing point of water is 0° C).	2
(i)	Factorise $e^{3x} + e^{3y}$.	1
(ii)	If $e^x + e^y = 3$ and $e^{3x} + e^{3y} = 10$, find the exact value of $x + y$.	2

End of Question 11

Question 12 (15 marks) Use SEPARATE writing paper.

(a) Point *A* is due south of the base of a hill, the angle of elevation from *A* to the top of the hill, *H*, is 46°. Another point *B* is due west of *A* and the angle of elevation from *B* to the top of the hill is 35° . The distance *AB* is 220 m.

(i)	Show that $OA = h \tan 44^{\circ}$.	1

(ii) Find the height of the hill, h correct to 1 decimal place. 2

Question 12 continues on page 8

Question 12 (continued)

(b) In the diagram below ABCD is a cyclic quadrilateral. *E* is a point on *AB* and *F* is a point on *DC* such that $EF \parallel AD$. *BF* produced and *CE* produced meet the circle through *A*, *B*, *C*, *D* at *H* and *G* respectively.

(i) Show that *EBCF* is a cyclic quadrilateral.
(ii) Show that *GH* || *EF*, giving reasons.
2

(c) Let $f(x) = 2\cos^{-1}\left(\frac{x}{3}\right)$.

(i)	State the domain and range of the function $f(x)$.	2
((ii)	Sketch the graph of $y = f(x)$ using $\frac{1}{3}$ of a page.	1

- (iii) Determine the inverse function $y = f^{-1}(x)$, and write down the domain of this inverse function. 2
- (iv) Hence or otherwise find the exact value of the volume of the solid of revolution 3 formed when the region bounded by the curve y = f(x), the *x*-axis and the *y*-axis is rotated about the *y*-axis.

End of Question 12

Marks

2

3

Question 13 (15 marks) Use SEPARATE writing paper.

(a) A spherical metal ball is heated so that its diameter is increasing at a constant rate of 0.005 m/s. Given the surface area of the sphere is $S = \pi D^2$ where *D* is the diameter of the sphere, at what rate is the surface area of the metallic ball increasing when its diameter is 6 metres? Correct your answer to 2 decimal places.

(b) The speed v (cm/s) of a particle moving in a straight line is given by $v^2 = 12 + 8x - 4x^2$, where the magnitude of its displacement from a fixed point O is x (cm).

(i) Show that the motion is simple harmonic.
(ii) Find the amplitude of the motion.
(iii) Find the maximum speed of the particle and state where it occurs.
2

(c) Let $f(x) = e^x + \ln x$.

(i)	Show that $f(x)$ is a monotonically increasing function for $x > 0$.	2
	Hence explain why $f(x)$ has an inverse.	

(ii) The graphs of y = f(x) and $y = f^{-1}(x)$ meet at exactly one point *P*. Let α be the *x*-coordinate of *P*. Explain why α is a root of the equation

$$e^x + \ln x - x = 0.$$

- (iii) Take 0.5 as a first approximation for α . Use one application of Newton's method to find a second approximation for α correct to 3 significant figures.
- (d) Prove by mathematical induction that, for $n \ge 1$,

$$\frac{3}{1\times2\times2} + \frac{4}{2\times3\times2^2} + \frac{5}{3\times4\times2^3} + \dots + \frac{n+2}{n(n+1)2^n} = 1 - \frac{1}{(n+1)2^n}$$

End of Question 13

Marks

Question 14 (15 marks) Use SEPARATE writing paper.

(a) Use the substitution $u = 4 - x^2$ to evaluate

$$\int_0^2 \frac{x}{\sqrt{4-x^2}} \, dx \, .$$

(b) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are points on the parabola $x^2 = 4ay$. The normal to the parabola at *P* and *Q* intersect at the point $T(-apq(p+q), a(2+p^2+pq+q^2))$. (DO NOT prove this)

- (i) If q = -3p, show that the coordinates of T are $(-6ap^3, 2a + 7ap^2)$. 1
- (ii) There is a third normal to the parabola at the point $R(2ar, ar^2)$ that passes through the point T. Show that the parameter corresponding to the point R satisfies the equation 2

$$r^3 - 7p^2r + 6p^3 = 0.$$

(iii) Hence find the coordinates of the point R in terms of p.

Question 14 continues on page 11

3

2

1

Question 14 (continued)

(c) A soccer ball is at ground level on a horizontal plane. The ball was kicked at an angle α and with velocity *v* metres per second. You may assume that if the origin is taken to be the point of projection, the path of the ball is given by the equation

$$y = x \tan \alpha - \frac{g x^2 \sec^2 \alpha}{2 y^2}$$

where $g \text{ ms}^{-2}$ is the acceleration due to gravity. (DO NOT prove this)

Steve Beckham wants to calculate the "perfect" angle to kick the ball to reach the goal. The defenders are standing between c metres and at most d metres from Steve. The defenders cannot jump higher than h metres. The trajectory of the ball is shown in the diagram below.

(i) Explain why c and d are solutions to the equation

$$\frac{g\sec^2\alpha}{2v^2}x^2 - x\tan\alpha + h = 0.$$

(ii) Show that
$$c + d = \frac{2v^2 \tan \alpha}{g \sec^2 \alpha}$$
.

(iii) Hence show that
$$\tan \alpha = \frac{h(c+d)}{cd}$$
. 2

(iv) The horizontal range of the soccer ball is given by $R = \frac{v^2 \sin 2\alpha}{g}$. **3**

Use the result in part (iii) to show $\frac{v^2}{g} = \frac{c^2 d^2 + h^2 R^2}{2hcd}$.

End of Exam

Year 12 CHS 2018 Mathematics Extension 1 (3U) TRIAL Solutions

Section I

Q1	Q2	Q3	Q4	Q5
(A)	(D)	(D)	(B)	(A)
Q6	Q7	Q8	Q9	Q10
(C)	(C)	(A)	(B)	(C)

Question 1

$$\sin x + \cos x = R \sin(x + \alpha) \text{ where}$$
$$R = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ and } \alpha = \tan^{-1} \left(\frac{1}{1}\right) = \frac{\pi}{4}$$
$$\therefore (A)$$

Question 2

$$3x + y = 4 \rightarrow m_1 = -3$$

$$x - 2y = 5 \rightarrow m_2 = \frac{1}{2}$$

$$\therefore \tan \theta = \left| \frac{-3 - \frac{1}{2}}{1 + (-3) \times \frac{1}{2}} \right| = 7$$

$$\theta = \tan^{-1}(7)$$

$$\therefore (D)$$

Question 3

factor
$$x + 1 \rightarrow x = -1$$
 is a root
(I) $(-1)^{2018} - 1 = 0$ (IV) $(-1)^{2017} + 1 = 0$
 \therefore (D)

Question 4

Let *O* be the centre of circle $\angle OBC = 90^{\circ}$ (radius \perp tangent) $\angle ODC = 90^{\circ}$ (radius \perp tangent) $\angle BOD = 2\alpha$ (angle at centre twice angle at circumference) $2\alpha + 90^{\circ} + 90^{\circ} + \beta = 360^{\circ}$ (angle sum of quadrilateral *OBCD*) $\therefore 2\alpha + \beta = 180^{\circ}$

∴ (B)

∴ (A)

Question 5

 $\ddot{x} = -4x \rightarrow n = 2.$ $x = a \sin 2t \rightarrow v = 2a \cos 2t,$ $t = 0, v = 4 \rightarrow 4 = 2a \cos 0 \rightarrow a = 2$ $\therefore x = 2 \sin 2t$

Question 6

$$\frac{d}{dx}\left(6\sin^{-1}\frac{x}{3}\right) = 6 \times \frac{1}{\sqrt{3^2 - x^2}} = \frac{6}{\sqrt{9 - x^2}}$$

:. (C)

∴ (C)

Question 7

Reflect y = f(x) about y = x.

Question 8

Vertical asymptote, denominator = 0 $(x-2)(x+1) = 0 \rightarrow x = 2, x = -1$

Horizontal asymptote,

$$y = \lim_{x \to \infty} \frac{x+3}{(x-2)(x+1)} = \lim_{x \to \infty} \frac{x+3}{x^2 - x - 2}$$
$$= \lim_{x \to \infty} \frac{\frac{x}{x^2} + \frac{3}{x^2}}{\frac{x^2}{x^2} - \frac{x}{x^2} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{3}{x^2}}{1 - \frac{1}{x} - \frac{2}{x^2}}$$
$$= \frac{0+0}{1-0-0} = 0$$
$$\therefore (A)$$

Question 9

Point $(4ap, 4ap^2)$ lies on the equation of the normal by substitution into the equation of normal.

LHS =
$$x + 2py$$

= $4ap + 2p \times 4ap^2$
= $4ap + 8ap^3 =$ RHS
 \therefore (B)

Question 10

$$x = 3 \cos 2t + 4 \sin 2t.$$

$$v = -6 \sin 2t + 8 \cos 2t$$

$$\ddot{x} = -12 \cos 2t - 16 \sin 2t$$

$$= -4(3 \cos 2t + 4 \sin 2t)$$

$$= -4x$$

$$\therefore (C)$$

Section II

Question 11

(a)
$$x = \frac{-3 \times 1 + 2 \times 5}{2 - 3} = -7$$
, $y = \frac{-3 \times 4 + 2 \times 2}{2 - 3} = 8$
 $\therefore M = (-7, 8)$

- 1 of 4 -

(b)	2	$\frac{2}{x} \le \frac{x}{2}$ $x \ne 0$
	, 2	c = 2
	$\frac{-}{x} \times x$	$x^2 \leq \frac{\pi}{2} \times x^2$
	2	$x < x^3$
	۷.	$x \leq \frac{1}{2}$
	4.	$x \le x^3$
		$0 \le x^3 - 4x$
		$0 \le x \left(x - 2 \right) \left(x + 2 \right)$
()	∴-2	$\leq x < 0, x \geq 2$
(c)	S	$ in\left(\frac{x}{2}\right) = \sin\left(\frac{x}{2}\right) $
	$\lim_{x\to 0} -$	$\frac{(5)}{4x} = \frac{1}{4} \lim_{x \to 0} \frac{(5)}{x}$
		$\frac{1}{1}$
		$=\frac{1}{1}\times\frac{1}{1}\lim_{n\to\infty}\frac{\sin(n)}{3}$
		$4 \overline{3}_{x \to 0} \underline{x}_{2}$
		3
		$=\frac{1}{4}\times\frac{1}{3}\times1=\frac{1}{12}$
(d)	(i)	$\frac{dT}{dt} = -kAe^{-kt}$
		dt
		$=-k\left(Ae^{-\kappa t}-12+12\right)$
		=-k(T+12)
	(ii)	When $t = 0$, $T = 24^{\circ}$ $24 - 4e^{-k \times 0}$ 12
		$24 - Ae^{-12}$ $24 - 4 \times 1 - 12$
		A = 24 + 12 = 36
	(iii)	$9 = 36e^{-k \times 15} - 12$
		$21 = 36e^{-15k}$
		$21 - e^{-15k}$
		$\frac{1}{36} - e$
		$k = -\frac{1}{15} \ln \left(\frac{21}{36} \right) \approx 0.0359$
	(iv)	$0 = 36e^{-kt} - 12$
		$12 = 36e^{-kt}$
		$12 - e^{-kt}$
		$\overline{36}^{-e}$
		$t = -\frac{1}{k} \ln\left(\frac{12}{36}\right)$
		$\approx -\frac{1}{0.0359} \ln\left(\frac{12}{36}\right)$
		$= 30.6 \approx 31 \min$

(e) (i)
$$e^{3x} + e^{3y} = (e^x)^3 + (e^y)^3$$

 $= (e^x + e^y)((e^x)^2 - e^x e^y + (e^y)^2)$
(ii) $e^{3x} + e^{3y} = (e^x + e^y)((e^x)^2 - e^x e^y + (e^y)^2)$
 $10 = 3((e^x)^2 - e^x e^y + (e^y)^2)$
 $10 = 3((e^x)^2 + 2e^x e^y + (e^y)^2 - 3e^x e^y)$
 $10 = 3((e^x + e^y)^2 - 3e^x e^y)$
 $10 = 3((3)^2 - 3e^{x+y})$
 $e^{x+y} = \frac{17}{9}$
 $x + y = \ln(\frac{17}{9})$

Question 12

(a) (i)
$$\frac{OA}{h} = \tan(90^\circ - 46^\circ)$$

 $OA = h \tan 44^\circ$

(ii)
$$(h \tan 55^\circ)^2 = 220^2 + (h \tan 44^\circ)^2$$

 $h^2 (\tan^2 55^\circ - \tan^2 44^\circ) = 220^2$
 $h = \frac{220}{\sqrt{\tan^2 55^\circ - \tan^2 44^\circ}}$
 $= 209.09...$
 ≈ 209.1

- (b) (i) $\angle BEF = \angle EAD$ (corresponding angle on parallel lines, AD||EF) $\angle EAD + \angle FCB = 180$ (Opposite angles of cyclic quad ABCD) $\therefore \angle BEF + \angle FCB = 180$ $\therefore EBCF$ is a cyclic quadrilateral (opposite angles are supplementary)
 - (ii) $\angle GHF = \angle GCB$ (angles in the same segment, cyclic quad *ABCD*) $\angle EFB = \angle ECB$ (angles in the same segment, in cyclic quad *EBCF*) $\angle GHF = \angle EFB$ *GH* || *EF* (corresponding angles are equal)

Year 12 CHS 2018 Mathematics Extension 1 (3U) TRIAL Solutions

(iii)

$$\frac{x}{2} = \cos^{-1}\left(\frac{y}{3}\right)$$
$$\cos\left(\frac{x}{2}\right) = \frac{y}{3}$$
$$y = 3\cos\left(\frac{x}{2}\right)$$
$$\therefore f^{-1}(x) = 3\cos\left(\frac{x}{2}\right)$$
Domain: $0 \le x \le 2\pi$

(iv)
$$V = \pi \int_0^{\pi} x^2 dy$$
$$= \pi \int_0^{\pi} \left(3 \cos\left(\frac{y}{2}\right) \right)^2 dy$$
$$= 9\pi \int_0^{\pi} \frac{1 + \cos y}{2} dy$$
$$= \frac{9\pi}{2} \left[y + \sin y \right]_0^{\pi}$$
$$= \frac{9\pi^2}{2}$$

Question 13

(a)

$$\frac{dS}{dt} = \frac{dS}{dD} \times \frac{dD}{dt}$$

$$= 2\pi D \times \frac{dD}{dt}$$

$$= 2\pi \times 6 \times 0.005$$

$$\approx 0.19$$

(b) (i)
$$\frac{1}{2}v^2 = 6 + 4x - 2x^2$$
$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = 4 - 4x$$
$$\ddot{x} = -4(x-1)$$
i.e. \ddot{x} is proportional to x .

- (ii) $v = 0 \rightarrow 12 + 8x 4x^2 = 0$ $-4(x^2-2x-3)=0$ $(x-3)(x+1) = 0 \rightarrow x = 3, -1$ Amplitude = 3 - 1 = 2
- (iii) Max speed occur at the centre of motion, at x = 1, $v^2 = 12 + 8(1) - 4(1)^2$ $v^2 = 16 \rightarrow v_{\text{max}} = 4 \text{ m/s}$
- (i) (c) Since $e^x > 0$ and $\frac{1}{x}$ for x > 0, $\therefore f'(x) = e^x + \frac{1}{x} > 0 \text{ for } x > 0.$

A monotonic increasing function implies 1 to 1 function as there are no turning points.

The two graphs intersect on the line (ii) y = x. So α will satisfy $f(x) = x \rightarrow e^x + \ln x = x.$ Hence $e^x + \ln x - x = 0$

(iii)
$$x = 0.5 - \frac{e^{0.5} + \ln 0.5 - 0.5}{e^{0.5} + \frac{1}{0.5} - 1} \approx 0.328$$

(d) Prove
$$n = 1$$
 is true

$$LHS = \frac{3}{1 \times 2 \times 2} = \frac{3}{4} RHS = 1 - \frac{1}{2 \times 2} = \frac{3}{4}$$
Therefore $n = 1$ is true.

Assume
$$n = k$$
 is true

$$\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \dots + \frac{k+2}{k(k+1)2^{k}} = 1 - \frac{1}{(k+1)2^{k}}$$
Prove $n = k+1$ is true, i.e.

$$\frac{3}{1 \times 2 \times 2} + \dots + \frac{k+2}{k(k+1)2^{k}} + \frac{k+3}{(k+1)(k+2)2^{k+1}}$$

$$= 1 - \frac{1}{(k+2)2^{k+1}}$$

Year 12 CHS 2018 Mathematics Extension 1 (3U) TRIAL Solutions

$$LHS = \frac{3}{1 \times 2 \times 2} + \dots + \frac{k+2}{k(k+1)2^{k}} + \frac{k+3}{(k+1)(k+2)2^{k+1}}$$

= $1 - \frac{1}{(k+1)2^{k}} + \frac{k+3}{(k+1)(k+2)2^{k+1}}$
= $1 - \left[\frac{2(k+2)}{(k+1)(k+2)2^{k+1}} - \frac{k+3}{(k+1)(k+2)2^{k+1}}\right]$
= $1 - \frac{2(k+2)-k-3}{(k+1)(k+2)2^{k+1}}$
= $1 - \frac{k+1}{(k+1)(k+2)2^{k+1}}$
= $1 - \frac{1}{(k+2)2^{k+1}}$
= $1 - \frac{1}{(k+2)2^{k+1}}$

∴ n = k + 1 is true whenever n = k is true. ∴ As it is true for n = 1, by induction, the result is true for $n \ge 1$.

Question 14

(a)
$$u = 4 - x^2 \rightarrow du = -2xdx$$

 $x = 2 \rightarrow u = 0, \quad x = 0 \rightarrow u = 4$
 $\int_{0}^{2} \frac{x}{\sqrt{4 - x^2}} dx = -\frac{1}{2} \int_{4}^{0} \frac{1}{\sqrt{u}} du$
 $= \frac{1}{2} \int_{0}^{4} u^{-\frac{1}{2}} du = \left[\sqrt{u}\right]_{0}^{4} = 2 - 0 = 2$

(b) (i) Substitute q = -3pT(-ap(-3p)(p+-3p), $a(2+p^2+p(-3p)+(-3p)^2))$ = $(3ap^2(-2p), a(2 + p^2 - 3p^2 + 9p^2))$ $=(-6ap^3, 2a+7ap^2)$ Equation of the normal at R is (ii) $x + ry = ar^3 + 2ar$. Since it passes through the point TThe coordinates of T satisfies the above equations. $-6ap^3 + r(2a + 7ap^2) = ar^3 + 2ar$ $-6ap^3 + 2ar + 7ap^2r = ar^3 + 2ar$ $-6ap^3 + 7ap^2r = ar^3$ $ar^{3} - 7ap^{2}r + 6ap^{3} = 0$ $r^{3} - 7p^{2}r + 6p^{3} = 0$ The parameters of the three numbers (iii) satisfies the cubic equation in (ii). Sum of roots = $0 \rightarrow p + -3p + r = 0$ $-2p + r = 0 \rightarrow r = 2p$ Coordinates of *R* is $(2a(2p), a(2p)^2)$ Coordinates of *R* is $(4ap, 4ap^2)$

(c) (i) The projectile passes through the points (c, h) and (d, h) $h = x \tan \alpha - \frac{gx^2 \sec^2 \alpha}{2v^2}$ $\frac{gx^2 \sec^2 \alpha}{2v^2} - x \tan \alpha + h = 0$ Therefore x = c and x = d are the roots of the quadratic equation. (ii) Sum of the roots

$$c+d = -(-\tan\alpha) \div \frac{g\sec^2\alpha}{2v^2}$$
$$= \tan\alpha \times \frac{2v^2}{g\sec^2\alpha} = \frac{2v^2\tan\alpha}{g\sec^2\alpha}$$

(iii) Product of roots

$$cd = h \div \frac{g \sec^2 \alpha}{2v^2} = \frac{2v^2 h}{g \sec^2 \alpha}$$
Therefore using the result from (ii)

$$\frac{c+d}{cd} = \frac{2v^2 \tan \alpha}{g \sec^2 \alpha} \div \frac{2v^2 h}{g \sec^2 \alpha}$$

$$= \frac{2v^2 \tan \alpha}{g \sec^2 \alpha} \times \frac{g \sec^2 \alpha}{2v^2 h} = \frac{\tan \alpha}{h}$$

$$\therefore \tan \alpha = \frac{h(c+d)}{cd}$$

(iv) Rearranging
$$R = \frac{v \sin 2\alpha}{g}$$

$$v^{2} = \frac{Rg}{\sin 2\alpha}$$

$$= \frac{Rg}{\frac{2t}{1+t^{2}}} (\text{where } t = \tan \alpha)$$

$$= \frac{Rg}{2t} (1+t^{2})$$

$$= \frac{Rg}{2} (\frac{1}{t}+t)$$

$$= \frac{Rg}{2} (\frac{cd}{h(c+d)} + \frac{h(c+d)}{cd})$$

$$= \frac{Rg}{2} (\frac{cd}{hR} + \frac{hR}{cd})$$

$$= \frac{Rg}{2} (\frac{c^{2}d^{2} + h^{2}R^{2}}{hRcd})$$

$$\frac{v^{2}}{g} = \frac{c^{2}d^{2} + h^{2}R^{2}}{2hcd}$$